Solar Concepts and monitoring results of buildings with high solar thermal fraction in Austria

DI Walter Becke

AEE – Institut für Nachhaltige Technologien (AEE INTEC)
8200 Gleisdorf, Feldgasse 19, AUSTRIA
Content

Boundary conditions to reach high solar thermal fractions
 heat demand
 suitable areas
 storage capacity

system concepts for high solar thermal fractions

Monitoring results

Conclusion
Boundary conditions – heat demand

Optimisation before realisation!

Requirements for subsidy program:
Spec. Heating demand < 45 kWh/m²a

All buildings planned for at least 70% solar fraction of DHW and heating

Data basis: 37 single family houses with accompanying research
Boundary conditions – suitable solar active areas
Boundary conditions – storage capacity

Key component: thermal storage

readily available:
buffer storage (water) & TABS

Data basis: 37 single family houses with accompanying research
Two main system/storage concepts for buildings with high solar fraction

System concept „A“
Traditional large water storages
- 57 plants
- 19 plants with accompanying research
- Water Storage Volume
 - 3 to 90 m³
 - specific: 60 to 2600 l/m²

8 m³ water tank (95/30°C)

System concept „B“
Thermal activation of building mass (ceilings, foundation)
- 48 plants
- 21 with accompanying research
- Storage Volume (specific: 60 to 510 l/m²)
 - Water storage Volume
 0.8 to 2 m³
 - Concrete Storage Volume
 20 to 148 m³ (1.2 to 9 m³ water equ.)

120 m³ thermal activation of building mass (27/20°C), 1 m³ water tank (95/30°C)

Reduced water tank volume by utilising thermal activation of building mass
Principle of using building mass as storage

Advantages of TAB´s:

- Consequent reduction of the water storage volume
- Cost reduction (storage, enclosed space)
- Increased solar yields due to low temperatures (<40°C)
- Reduction of storage losses
- Use as heat delivery system
- Load management between building mass and auxiliary heating system reduces peak load
- Solar coverage ratios of between 50 and 90%.
System concepts to achieve high solar fraction
Thermal activated building masses

Direct connection with solar circuit
- No extra heat exchanger
- (very) low usable solar temperatures

At the expense of
- no auxiliary heating of the TABS
- Copper tubes recommended

Single family house
84% solar fraction
Monitoring results
operation temperatures
System concepts to achieve high solar fraction
Thermal activated building masses

Indirect connection with solar circuit
- System integration similar to floor heating
- Plastic tubes possible
- Heating and cooling

At the expense of
- Lower solar yield due to higher temperature differences (heat exchanger)

Event hall
97% solar thermal fraction, PV plant

Sports hall
55% solar thermal fraction
100 kWp

Carpentry
79% solar thermal fraction, 50 kWp PV
Monitoring results – single family houses heat demand

DHW demand **below** expected value in 90% of cases
(Average DHW demand **-32%**)

While at the same time heating demand **above** expected value
Monitoring results
Room temperatures

Single family houses

Average measured room temperatures **23.3°C**

Simulation Temperature **20°C**
Conclusion

- A variety of hydraulic concepts are possible to achieve solar thermal fractions above 80%
- Big buffer storages are a known and reliable technology (disadvantage: space requirement)
- Through the use of TABS
 - the collector can be operated more efficiently
 - the buffer storage volume can be significantly reduced
 - Passive/free cooling becomes possible
- The storage capacity of TABS depends on the permitted temperature range
- The actual heat consumption is usually higher than the forecast
 increased consumption for space heating, reduced consumption for hot water
- Good understanding and knowledge of boundary conditions leads to successful projects